
DeltaXML Ltd Malvern Hills Science Park, Malvern, Worcestershire, WR14 3SZ, UK
 info@deltaxml.com +44 1684 532 130
DeltaXML Ltd Malvern Hills Science Park, Malvern, Worcestershire, WR14 3SZ, UK
 info@deltaxml.com +44 1684 532 130

An Unrealistic Dream
The dream for any writer is to produce the perfect content. A single
author writes the perfect document from start to finish in a single
session. It never needs updating because it’s already perfect. What
could such a document be about? If the document described a
business process, that process would also have to be perfect. If it
wasn’t, our perfect document would need to change as the process
itself changes. If the document was a maintenance manual for a
machine, the machine itself would have to be perfect. Changes to the

machine design to improve it would need updates to the manual.

This is, of course, an unrealistic scenario. We all know that these
documents don’t exist. The changing nature of the subjects we write
about prevents us from attaining perfection. Perfection may be a

writer’s dream, but it is an unrealistic one.

The Reality
In reality, writing a document is an iterative process. Content goes
through several draft versions before we’re happy to submit it as
releasable. Once the author is happy, the document passes to a
reviewer, who will make further changes. Finally, the document is
ready for approval.

The life of a document doesn’t end there. If the business process
we’re documenting changes, our document needs updating. If the
machine has an improved component installed, we need to ensure
that we change the manual. The document needs reworking, reviewing
and editing all over again. This is a common scenario that all tech
writers are familiar with.

The right tools can help us to manage changes in this update cycle.
Most editing software includes change tracking functionality. This
allows you to record your own changes or view a reviewer’s
suggestions.

This works well when all parties use the same editor but what about
when that isn’t the case? Even with change tracking, it’s difficult to

manage changes across several document versions. For this use
case, a comparison tool is the best solution. They are able to highlight
change across a range of document versions without having to track
changes. These tools can even generate change-tracking entries,
allowing you to view changes in a text editor.

The Nightmare
The workflow so far has been linear, but how can we handle more
complicated workflows? For this we need to make use of branching.
There are various reasons to use branching. We may be managing
user documentation for many versions or releases of a product. This
use is known as release management. Branching is also used to
separate the documentation of a new product feature. If it’s uncertain
which product release will use the new feature, a feature branch
allows progress without interrupting the main branch. Once the
feature is complete, its documentation is included in the appropriate
release.

Branching is often used to manage product variants, such as platform-
specific documentation. The main branch holds common
documentation, and further branches hold documentation for specific
platforms.

These are just a few of the possible use cases for branching. You will
need to decide which strategy best suits your specific use case and
implement a branching policy for your writing team.

A common aspect of all the branching strategies is a need to be able
to pass changes between the branches. How to achieve this will
depend on how the branches are managed and maintained.

Figure 1: A simple document version workflow

Conference Paper: tcworld 2015

Branch and Merge:
A content manager’s dream or a tech writer’s nightmare?

www.deltaxml.com

Figure 2: A complex workflow using a simple branching model

http://www.deltaxml.com
http://www.deltaxml.com

www.deltaxml.com

DeltaXML Ltd Malvern Hills Science Park, Malvern, Worcestershire, WR14 3SZ, UK
 info@deltaxml.com +44 1684 532 130
DeltaXML Ltd Malvern Hills Science Park, Malvern, Worcestershire, WR14 3SZ, UK
 info@deltaxml.com +44 1684 532 130

Imagine a product documentation scenario that starts with a simple
workflow as shown in Figure 1. The documentation for version 2 of the
product starts while authors also work on v1.2 updates. Version 2
documentation is held on its own branch. After version 2 is complete,
changes are made for v1.2. These are relevant to include in the version
2 branch to produce 2.1 but how do we include those changes? First,
we need to know what the changes were. For this we can use
comparison tools. But then we need to apply them to version 2 of the
document. Without suitable tooling, this has to be a manual process.
Authors may use cut and paste, or view the documents side by side
and manually edit version 2 to include the changes. Even with a simple
branching model, such as that in Figure 2, this becomes difficult to
manage. When branching becomes more complex, we find ourselves
in a nightmare scenario.

Dreaming a new dream
How do we wake up from this nightmare? We need to dream a new
dream that includes appropriate tooling to help us manage the
situation. We need a tool that removes the manual process of applying
changes and the potential for human error. We need to use a merge
tool.

A merge tool will identify the differences between branches and merge
changes from one branch to another. It is applicable in all the branching
scenarios discussed earlier. For a ‘feature branch’, it can merge the
branch back into the main trunk once the feature is complete. In
release management, it can merge edits made to previous versions
into later version branches to keep them updated.

Banishing the nightmare
Source control systems such as Git and Mercurial feature merge tools
for performing merge operations between branches. While these are
used successfully in many situations, merging structured content
such as XML can be problematic and can lead to fundamental errors
in the merge result. The structure of XML allows for a more intelligent
merge because our understanding of the structure informs the merge
operation.

A structured XML-aware merge tool provides the following features,
many of which gives significant benefits over a line-based merge tool.

Well Formed Result
This is a key requirement when content is stored as structured XML.
Line-based merge tools may break the integrity of the XML content
even to the extent that it can no longer be parsed. An XML merge tool
must be able to ensure that all output can be parsed.

Valid Result
Extending the previous feature, validity against a specific XML
grammar, e.g. DITA, is vital if we are to use the result in our document
workflow. A merge tool must be capable of understanding the
constraints of such a grammar and must present the output in a way
that doesn’t break the validity of the content.

Fewer Conflicts
When documents are merged, there will invariably be conflicts at
some stage. These occur when more than one writer has made
changes to the same area of the content. Merge tools that do not
understand XML syntax may identify changes that are not relevant in
an XML context e.g. changes to attribute order. This will lead to
unnecessary and unhelpful conflicts. An XML-aware merge tool can
minimise the number of conflicts that occur by ignoring such false
changes.

Cherry Picking
This term is used to describe the selection of a subset of identified
changes. It may not be appropriate to apply all changes from one
branch into another branch. Enabling the content manager to select a
subset of changes to apply is an important feature in any merge tool.

Auto-Resolution
In some branching models, it may be possible to programmatically
resolve any conflicts that occur. If logical rules can be applied in order
to resolve conflicts, the level of human interaction can be minimised.
Merge tools that provide this feature can be extremely beneficial in
streamlining a merge workflow

Customisable Granularity
Changes can always be presented at different levels of detail. Simple
word changes inside a paragraph could be presented at the word level
or they could be presented as two versions of a paragraph. They
could even be presented as two versions of the whole section. The
ability to customise the granularity of change can help to improve the
review process.

Conclusion
The appropriateness of particular content management strategies is
dependent both on the context in which content is created as well as
on the subject of the content itself. These strategies range from
simple, linear workflows to complex branched structures, often
appropriate when documenting software releases that employ a
similar branching model. Even simple strategies benefit from tooling
such as change-tracking and comparison. As the model becomes
more complex, more sophisticated tools are needed to support it.
Standard line-based merge tools are not sufficient for handling
structured XML content. Content curators should use XML-aware
merge tools to ensure the correct handling of the structure and syntax
of XML. With the correct feature-set, these tools can turn the nightmare
of manually merging complex branching models into a content
manager’s dream come true.

Written By: Tristan Mitchell, Product Manager
At DeltaXML, UK

http://www.deltaxml.com
http://www.deltaxml.com

